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Abstract

The resolving power of a chromatographic column is commonly expressed in
terms of the peak positions and standard deviations of the two peaks to be
separated. Calculation of the resolution for Gaussian peaks is straightforward.
When the column properties vary with position, the peaks are no longer
generally Gaussian. We use a recently developed theory to calculate approxima-
tions to moments of the peak when diffusion is a relatively small effect, and
thereby calculate an expression for the resolving power of the system.

We have recently presented a technique for calculating concentration
profiles in nonuniform chemical separation systems, exemplified by pore
gradient electrophoresis, density gradient centrifugation, GPC with vary-
ing gel density, and isoelectric focusing (1-3). In general, the concentration
profile is not Gaussian for these systems, and the form of the moments
defined by these profiles is not readily evident from the results that have
been presented in Ref. /. The moments are of some general interest be-
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338 WEISS AND DISHON

cause they appear in the expression for resolution. It is the purpose of
this note to calculate approximate expressions for the moments and for
the resolving power of a nonuniform separation column. As in our earlier
work, the basic assumptions are (a) that diffusion is a secondary effect
relative to convection; more specifically, the peak width of an initial
pulse is small compared to column length, and (b) that neither the diffusion
function or the convection function are concentration dependent.

Let the column length be L; let x = Ly be the spatial coordinate, so
that » is dimensionless with 0 € y < 1, let the diffusion function be
expressed as D, f(y), where f(y) is dimensionless; and let the convective
term be denoted v,g(»), where g(y) is likewise dimensionless. By conven-
tion we can choose v; and D, so that f(0) = g(0) = 1. Then a transport
equation can be written for the concentration, c(y, )

oc 0
= Bal 5] - 22w 0

or, using the dimensionless variables,

e = Dy/(v L), T =ut/L (2
we have
de 0 dc _ 0
. aa—y[f(y) 5;] 2 g )

The parameter ¢ is assumed to be small in what follows; for most of the
systems mentioned in the first paragraph ¢ is 10~ 2 or smaller. The functions
f(y) and g(y) are assumed to be of the order of 1, insuring that &f{y) «
lg(»)| for systems that do not come to equilibrium within the column.
Although y lies between 0 and 1, we neglect boundary effects, a procedure
that is allowable on physical grounds for most analytic techniques, but
not necessarily for elution techniques. The assumption simplifies the
mathematics considerably.
Define a running space coordinate { by

du
= 4
o= o @

In the absence of diffusion an initial pulse at y = 0 will propagate along
{ = 0. When diffusion is a small effect, only small |{| will be important.
Let the solution to Eq. (4) for y in terms of { and © be y = H({ + 1) so
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that when ¢ = 0 the trajectory of a peak initially at y = 0 is y = H(t).
If Y(y,7) is defined to be g(¥)c(y, 1), then it has been shown in Ref. 1
that y(y,7) can be expanded as

Y(y,7) = l//0(.})’ )+ 81/2‘/’1()’9 T) + 8'1[/2(})5 )+ (5)

and the first two terms of this series were calculated explicitly for a pulse
initially at y = 0. Moments of concentration are defined by

wo =" Lypoa " w2 ©

where, in accordance with the premise that boundary effects are negligible,
the limits of integration have been extended to + oco. Noticing that

dylg(y) = d{ (M
from Eq. (4), we can rewrite Eq. (6) as

o«

(s) = J HC + WD) L @®

in which we have chosen the units of concentration so that

r o(x,1) dx = 1

The calculation proceeds by expanding H({ + ) in a Taylor series
around { = 0, so that, for example

5o

uy(@) = j
WolloD) + D) o)+ )

We retain all terms up to those proportional to ¢ and neglect those pro-
portional to higher powers of &. This allows us to truncate the series for
¥ at the term &)/,, and the series for H({ + 1) at {2H"(7)/2. For an initial
loading symmetric around { = 0 we can eliminate a certain number of
the remaining terms by symmetry. If we define the functions F(u) and
G(u) in terms of f(u) and g(u) by

Fu) = f[HW), Gu) = glHu)] (10)

[H(t) +LH'(t) + 32 H'@) + - ]

—

and further define
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A@W) = Fw)/G*(u)
B(u) = A'(w) — [AW)/Gw))G" (u)

_ A(u) dG

) = du[caodu] an

then it has been shown that the equations for Y, ¥,, and ¥, are
0(;/;0 gA(7) 5625//20 =0 (12a)

al/" _ azdll — al/2 ’ az‘/’o 1/2 ¢0
T - o) G = e A T + B G (12b)
2 2

Ve Tz =5 a0+ 0%+ cone

+ el/zA’(t)C%C—le + s”zB(r)%//C—1 (12¢)

Let us consider the case of an initial pulse loading, c¢(x, 0) = é(x),
where d(x) is a Dirac delta function. The solution for ¥4({,7) has been
shown to be

2
o) = Winea @] exp | = 5 |

where
Mﬂ:f«mm,
0

that is, Yo({,7) is symmetric around { = 0 and

=0 (13)

(=2

Yol a0,7) = a%-/zo(&,r)

It is easy to verify from Eq. (12) that these facts imply that ,({, 1) is
an odd function and ¥,({, 7) is even, and that the property of Eq. (13)
holds for these functions as well. Thus we can write for y,(7):

W@ = H(x) + H”(‘r)g% + e 2H'(Db(z) + eH@)p(t) + - (14)

in which
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o= vt
b = " e a 1s)

p(1) = r Ua(G,1)

While it is possible to calculate explicit expressions for the ¥/’s, a sim-
pler procedure for calculating the quantities a(r), b(r), and p(z) is to
multiply Eq. (12) by the appropriate power of { and perform the integra-
tions. If we follow this prescription for a(z), for example, we find, by
integrating by parts, using Eq. (12a), that

® 5262'#0(5, *

axr):gA(r)j_w L D it = 2eA(x) f RZY:

= 2eA(7) (16)
or since a(0) = 0
a(t) = 2:A(T) (17N

In similar fashion we find

b(z) = 2e'?[A(r) — A(0)] — NE jt B(u) du
0

(18)
pr) =0
so that
uy(t) = H(r) + {A(T)H”(T) + 2[A(r) — A0))H (1)
_ j Bw) du H’(t)} b e (19)
0

The remaining terms in the series are proportional to 2 or higher powers
of e. In a similar fashion we can calculate the variance o2 as

o (1) = py(1) — u,%(1) = 2eAH' (D + -+
= 2eA()GH1) + - - (20)

In general the expansion of u,(7) up to terms proportional to ¢ can be
shown by the same methods to be
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4ty = H'(7) + {rH"‘(t)H '(r)[ZA(T) — 24(0) - j ‘ B(u) du]
0

+ rA@r — DHTXOH'@) + H ”(T)H"l(t)]} e+ (2D

For example, in pore gradient electrophoresis the experimental data
(4) indicate that to a good approximation we can choose

S(y) =exp(=Aay);  g(p) = exp(—2Ay) (22)

in which A is a dimensionless constant and for which

H(t) = %m (A + i)

. (23)
AT) = ———
@ A3 — a)
Thus, in the limit of large time, 6(t) increases monotonically for & < 1,
approaches a limit for o = 1, and tends to zero for « > 1. The detailed
calculations of concentration profiles given in Ref. 2 for « = 1 do appear
to indicate that the width of the peaks remain constant after the initial
broadening.
The moments u, and ¢ are the parameters required to study resolution,

conventionally defined as
1, —
R={=2—— 24
2(02 + oy @4

[(1 + 27)%~® — 1]

where the subscripts refer to the different proteins. We have calculated
values of the resolution for a nonuniform column, using the model of
pore gradient electrophoresis for which the relevant functions are enu-
merated in the last paragraph. We will specifically assume, in what follows,
that the mobilities of the two species differ, but that the two diffusion
constants are equal:

v, =00, D, =D,=D, A =14 25)

so that if we define e = D/(v L), then &; = ¢ and &, = &/6. The expression
for resolution now becomes

1n<l + (M‘c)
R= i 1+ At
@™ B@I” (A(Gr))”z i
1+ Az 0 1+ 62t

(26)
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neglecting terms proportional to &'/ (this amounts to ignoring terms
proportional to ¢ relative to 1). The resolution was calculated as a func-
tion of 1 for 1 = 0.4, a typical value, and for different values of a. We

compared the results to
10— D/y\'"?
-@m ) @7

obtained for a uniform column. For ¢ = 0.5, 1, and 2, the results obtained
indicate that the resolution with the nonuniform column would be ex-
perimentally indistinguishable from that of the uniform column. For
o = 0.5, the ratio of resolution obtained with a nonuniform column to
that obtained with a uniform column lies between 0.95 (at y = 1) to
1 at y = 0. When a = 2 the ratio lies between 1.10 and 1. If the resolu-
tion is calculated as a function of time rather than of space, the uniform
column tends to give better values of resolution for comparable sets of
parameters. These conclusions are valid for the spatial dependence
characteristic of pore gradient electrophoresis and for the separation of
two macromolecules. When one wishes to separate more than two mac-
romolecules, these conclusions are not necessarily valid.

Other quantities that are of some possible interest and can be expressed
in terms of moments relate to skewness (5). Our expressions for the
moments in Egs. (19)-(21) presuppose an initial pulse loading. The cal-
culations have to be redone ab initio for any alternate initial condition.
The present theory and that of Ref. I cannot be applied directly to elu-
tion chromatography because it neglects boundary effects, but a parallel
theory is presently under development for that case.
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