
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713708471

Resolution in Nonuniform Chromatographic Systems
George H. Weissa; Menachem Dishonb

a PHYSICAL SCIENCES LABORATORY DIVISION OF COMPUTER RESEARCH AND
TECHNOLOGY NATIONAL INSTITUTES OF HEALTH, BETHESDA, MARYLAND b DEPARTMENT
OF APPLIED MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOTH, ISRAEL

To cite this Article Weiss, George H. and Dishon, Menachem(1973) 'Resolution in Nonuniform Chromatographic Systems',
Separation Science and Technology, 8: 3, 337 — 343
To link to this Article: DOI: 10.1080/00372367308058007
URL: http://dx.doi.org/10.1080/00372367308058007

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713708471
http://dx.doi.org/10.1080/00372367308058007
http://www.informaworld.com/terms-and-conditions-of-access.pdf


SEPARATION SCIENCE, 8(3), pp. 337-343.1973 

Resolution in Nonuniform Chromatographic Systems 

GEORGE H. WEISS 
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NATIONAL lNSTITUTES OF HEALTH 
BETHESDA, MARYLAND 20014 

MENACHEM DISHON 
DEPARTMENT OF APPLIED MATHEMATICS 
WEIZMANN INSTITUTE OF SCIENCE 
REHOVOTH, ISRAEL 

Abstract 

The resolving power of a chromatographic column is commonly expressed in 
terms of the peak positions and standard deviations of the two peaks to be 
separated. Calculation of the resolution for Gaussian peaks is straightforward. 
When the column properties vary with position, the peaks are no longer 
generally Gaussian. We use a recently developed theory to calculate approxima- 
tions to moments of the peak when diffusion is a relatively small effect, and 
thereby calculate an expression for the resolving power of the system. 

We have recently presented a technique for calculating concentration 
profiles in nonuniform chemical separation systems, exemplified by pore 
gradient electrophoresis, density gradient centrifugation, GPC with vary- 
ing gel density, and isoelectric focusing (1-3). In general, the concentration 
profile is not Gaussian for these systems, and the form of the moments 
defined by these profiles is not readily evident from the results that have 
been presented in Ref. 1. The moments are: of some general interest be- 
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338 WEISS AND DISHON 

cause they appear in the expression for resolution. It is the purpose of 
this note to calculate approximate expressions for the moments and for 
the resolving power of a nonuniform separation column. As in our earlier 
work, the basic assumptions are (a) that diffusion is a secondary effect 
relative to convection; more specifically, the peak width of an initial 
pulse is small compared to column length, and (b) that neither the diffusion 
function or the convection function are concentration dependent. 

Let the column length be L; let x = Ly be the spatial coordinate, so 
that y is dimensionless with 0 < y < 1, let the diffusion function be 
expressed as D,f(y),  where f(y) is dimensionless; and let the convective 
term be denoted u,g(y), where g(y) is likewise dimensionless. By conven- 
tion we can choose o1 and D ,  so thatf(0) = g(0) = 1. Then a transport 
equation can be written for the concentration, c(y, t )  

or, using the dimensionless variables, 

E = Dl/(vlL) ,  z = v,t/L 

we have 

The parameter E is assumed to be small in what follows; for most of the 
systems mentioned in the first paragraph E is lo-’ or smaller. The functions 
f(y) and g(y) are assumed to be of the order of 1, insuring that &y) << 
Ig(y)I for systems that do not come to equilibrium within the column. 
Although y lies between 0 and 1, we neglect boundary effects, a procedure 
that is allowable on physical grounds for most analytic techniques, but 
not necessarily for elution techniques. The assumption simplifies the 
mathematics considerably. 

Define a running space coordinate [ by 

du [=La- (4) 

In the absence of diffusion an initial pulse a t  y = 0 will propagate along 
[ = 0. When diffusion is a small effect, only small Ill will be important. 
Let the solution to Eq. (4) for y in terms of [ and z be y = H(c + z) so 
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RESOLUTION IN NONUNIFORM CHROMATOGRAPHIC SYSTEMS 339 

that when E = 0 the trajectory of a peak initially at y = 0 is y = H(T). 
If +(y,z)  is defined to be g(y)c(y ,r) ,  then it has been shown in Ref. 1 
that $(y,z)  can be expanded as 

$(Y,  5 )  = $o(Y, 4 + E1’2$l(Y, + E $ Z ( Y ,  4 + * ’ * ( 5 )  

and the first two terms of this series were calculated explicitly for a pulse 
initially at y = 0. Moments of concentration are defined by 

where, in accordance with the premise that boundary effects are negligible, 
the limits of integration have been extended to k 00. Noticing that 

4 M Y )  = 4 (7) 

from Eq. (4), we can rewrite Eq. (6) as 

in which we have chosen the units of concentration so that 

C(X, t )  dx = 1 s:, 
The calculation proceeds by expanding H(4‘ + T )  in a Taylor series 

around c = 0, so that, for example 

.[$‘o(4‘,T) &l’z$’i(c,T) +&$‘Z(I,Z) + ” ‘1 dc (9) 

We retain all terms up to those proportioinal to E and neglect those pro- 
portional to higher powers of E. This allows us to truncate the series for 

and the series for H(c $- T )  at c2H”(5)/2. For an initial 
loading symmetric around [ = 0 we can eliminate a certain number of 
the remaining terms by symmetry. If we define the functions F(u) and 
G(u) in terms off(u) and g(u) by 

at the term 

F@) =f[H(u)l, G(u) = g[H(u)l (10) 

and further define 
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340 WEBS AND DISHON 

then it has been shown that the equations for $o, $,, and t,b2 are 

Let us consider the case of an initial pulse loading, c(x, 0) = 6(x), 
where 6(x) is a Dirac delta function. The solution for $o((,z) has been 
shown to be 

where 

A(z) = J A(u) du, 
0 

that is, $o([,z) is symmetric around [ = 0 and 

*o(+ 0 0 9 4  = - - $ 0 ( < , 4  a 1 = o  (13) x [=*too 

It is easy to verify from Eq. (12) that these facts imply that T) is 
an odd function and I ) ~ ( [ ,  z) is even, and that the property of Eq. (13) 
holds for these functions as well. Thus we can write for pl(z): 

(14) 44 pl(z) = H(z) + H"(z) - + &""'(T)b(Z) + &H(z)p(z) + * * - 
2 

in which 
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RESOLUTION IN NONUNIFORM CHROMATOGRAPHIC SYSTEMS 341 

P(7)  = Sm @ Z G 9  4 
-a 

While it is possible to calculate explicit expressions for the @’s, a sim- 
pler procedure for calculating the quantities a(z), b ( ~ ) ,  and p ( ~ )  is to 
multiply Eq. (12) by the appropriate power of [ and perform the integra- 
tions. If we follow this prescription for u(T), for example, we find, by 
integrating by parts, using Eq. (12a), that 

= 2 ~ A ( z )  (16) 

a(z) = 2 ~ A ( z )  (17) 

or since a(0) = 0 

In similar fashion we find 

b(z) = 2E””A(T) - A(0)] -- J Z S ’  B(u) du 

(18) 
0 

P ( 4  = 0 

so that 

A(z)H“(r) + 2[A(z)  - A(O)]H’(z) 

B(u) du H’(T) + - * .  - J o  i 
The remaining terms in the series are proportional to E’ or higher powers 
of E. In a similar fashion we can calculate the variance 0’ as 

d ( r )  = p 2 ( z )  - plz(z) = 2~A(r)[H’(z)]~ + - - 3 

= 2&A(r)G2(z) + . * * (20) 

In general the expansion of pJ7)  up to terms proportional to E can be 
shown by the same methods to be 
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342 WElSS AND DISHON 

+ rA(T)[(r - 1 ) H ' - 2 ( ~ ) ( H ' ( ~ ) ) 2  + H"(.r)H'-'(.r)] E + . - (21) 1 
For example, in pore gradient electrophoresis the experimental data 

(4) indicate that to a good approximation we can choose 

f (J4  = exp (-W; d Y )  = exp (-;lv> (22) 
in which I is a dimensionless constant and for which 

1 
I 

A(T) = ~ 

4 3  - u) 

H(T) = -In (1 + 27) 

[(I -k - 11 1 

Thus, in the limit of large time, d ( ~ )  increases monotonically for M < 1, 
approaches a limit for M = 1, and tends to zero for c( > 1. The detailed 
calculations of concentration profiles given in Ref. 2 for c1 = 1 do appear 
to indicate that the width of the peaks remain constant after the initial 
broadening. 

The moments pl and CJ are the parameters required to study resolution, 
conventionally defined as 

where the subscripts refer to the different proteins. We have calculated 
values of the resolution for a nonuniform column, using the model of 
pore gradient electrophoresis for which the relevant functions are enu- 
merated in the last paragraph. We will specifically assume, in what follows, 
that the mobilities of the two species differ, but that the two diffusion 
constants are equal: 

U, = OV,,  D ,  = D,  = D, 11 = A2 (25) 

so that if we define E = D/(v,L), then c1 = E and c2 = &/tJ. 
for resolution now becomes 

. / I  + enT\ 

n 1 

The expression 
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RESOLUTION IN NONUNIFORM CHROMATOGRAPHIC SYSTEMS 343 

neglecting terms proportional to e l i Z  (this amounts to ignoring terms 
proportional to E relative to 1). The resoliition was calculated as a func- 
tion of z for I = 0.4, a typical value, and for different values of u. We 
compared the results to 

obtained for a uniform column. For a = 0.5, 1, and 2, the results obtained 
indicate that the resolution with the nonuniform column would be ex- 
perimentally indistinguishable from that of the uniform column. For 
c1 = 0.5, the ratio of resolution obtained with a nonuniform column to 
that obtained with a uniform column lies between 0.95 (at y = 1) to 
1 at y = 0. When a = 2 the ratio lies between 1.10 and 1. If the resolu- 
tion is calculated as a function of time rather than of space, the uniform 
column tends to give better values of resolution for comparable sets of 
parameters. These conclusions are valid. for the spatial dependence 
characteristic of pore gradient electrophoresis and for the separation of 
two macromolecules. When one wishes to separate more than two mac- 
romolecules, these conclusions are not necessarily valid. 

Other quantities that are of some possible interest and can be expressed 
in terms of moments relate to skewness (5). Our expressions for the 
moments in Eqs. (19)-(21) presuppose an initial pulse loading. The cal- 
culations have to be redone ub initio for any alternate initial condition. 
The present theory and that of Ref. I cannot be applied directly to elu- 
tion chromatography because it neglects boundary effects, but a parallel 
theory is presently under development for that case. 
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